
CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 5: Language Models Continued: Smoothing, Perplexity

Generative Language Models: A Review

How to build an N-gram language model for some N (usually 2 … 4):

1. Preprocess your text/corpus into sentences, with boundary markers

 <s> this is the sentence </s>

2. Calculate the probability distribution of all K-Grams for 2 ≤ K ≤ N

3. Sample from the distribution of bigrams with first token <s> to get first word w1;

4. Sample from the distribution of trigrams with first tokens <s> w1 to get second

word w2; etc. ….. until have

 <s> w1 w2 … wN-1 ;
5. Continue to sample from distribution of N-grams which match last N-1 words

generated until </s> is generated.

A Bigram Example of an N-Gram Model

Text:

1. Preprocess your text/corpus into sentences, with boundary markers

2. Calculate the probability distribution of all bigrams:

A Bigram Example of an N-Gram Model

3,4. Sample from the distribution of bigrams with first token <s> to get first word w1

Suppose the random sample gives us w1 = ‘john’

A Bigram Example of an N-Gram Model

5. Continue to sample bigrams whose first word is the last word generated:

Sentence so far Choices Prob Sample

 <s> john john </s> 2/3

 john likes 1/3 likes

 <s> john likes likes to 1 to

 <s> john likes to to play 3/4

 to watch 1/4 play

 <s> john likes to play play cards 1 cards

 <s> john likes to play cards cards </s> 1/3
 cards too 1/3
 cards more 1/3 </s>

<s> john likes to play cards </s>

A Bigram Example of an N-Gram Model

Not surprisingly, you can represent this as a Markov Chain:

A Bigram Example of an N-Gram Model

Or as an infinite tree:

We’ll come back to this soon….

Language models assign a probability to a sequence of tokens (letters,
words, etc.)
Thus, a language model is a probability distribution!

Some LMs have a finite range:

But those we consider in this course have an infinite range, namely:

 Sequences of tokens/words in the (infinite) language.

A data set is a finite sample of this infinite domain; put another way,

it is a discrete probability distribution with infinite domain, but have only a

finite number of sample points where the probability is non-zero.

Probability distribution of
letters in English: Range
is 26 letters.

Probabilistic LMs as Probability Distribution

So we have a finite approximation of an infinite discrete distribution,
say of all sentences:

Classical Sampling Problem:

How well does this finite sample
characterize the infinite
language?

Probabilistic LMs as Probability Distribution

All possible sentences
in language. ∞

Finite sample of
sentences. N

Probabilistic LMs as Sampled Distributions

Quality of the sample depends on:

o How large? (Bigger is better!)

o How representative of the language are the sample sentences?

• Samples from news reports will not be representative of novels.

• If you want to build a chat bot, sample from conversations!

• General language models need diverse sources.

Two important issues about building good language models:

• How do we evaluate the quality of our language model?

• What do we do about missing information?

How good is our LM?

Extrinsic evaluation of N-gram models uses information exterior to
model:

Extrinsic evaluation for comparing models A and B:

Put each model in a task in real life:

 Spelling corrector, speech recognizer, translation system

Run the task, get an accuracy for A and for B

How many misspelled words corrected properly?

How many words recognized/translated correctly?

Compare accuracy for A and B

Evaluation of Language Models

Difficulty of extrinsic (IRL) evaluation of N-gram models

Extrinsic evaluation: deploy your model IRL and measure it

• Time-consuming: accuracy is proportional to length of time, so can take

days/weeks/months

• May be difficult, subject to proper design of experiment, statistical

analysis, etc.

• May be impossible: How would you test an NLP system used on first

manned mission to Mars?

So, at least in the development phase, we need an intrinsic model…

Evaluation of Language Models

Intrinsic testing of LM using Train/Test Split

Randomly permute the set of sentences, then separate into

o Training Set (e.g., 80%)

o Testing Set (e.g., 20%)

o Create your model from the Training Set (create N-Gram distributions, train a network, etc.),

o Evaluate how likely your Testing Set is using the model: the sentences in the Testing Set

should be probable!

A very common metric is perplexity….

Perplexity

A LM (a probability distribution over sequences of tokens) can
o Evaluate the “goodness” of sequences (e.g., N-grams, sentences), and
o Generate plausible sequences (as if a human wrote them).

A LM should give a higher probability to a well-written text, and be “perplexed”
by a badly-written text.

The perplexity of badly-written text is large, and of a well-written text is small.

“Thus, the perplexity metric in NLP is a way to capture the degree of
‘uncertainty’ a model has in predicting (i.e. assigning probabilities to) text.”

This explaination is due to Fabio
Chiusano in Two Minutes NLP
(posted on the web site).

Perplexity

Example 1

Suppose our language has vocabulary

 V = { “ “a”, “the”, “red”, “fox”, “dog”, ”and”}

and we want our LM to predict the probability of

 W = “a red fox .”

Thus:

 P(W) = P(“a”) ∗ P(“red” | “a”) ∗ P(“fox” | “a red”) ∗ P(“.” | “a red fox”)

Perplexity

Suppose our LM assigns these probabilities to the first word in a sentence:

W = “a red fox”

Perplexity

Suppose our LM assigns these probabilities:

W = “a red fox .”

Perplexity

Thus:

 P(W) = P(“a”) ∗ P(“red” | “a”) ∗ P(“fox” | “a red”) ∗ P(“.” | “a red fox”)

 = 0.4 * 0.27 * 0.55 * 0.79

 = 0.0469

BUT, notice that the product of probabilities gets smaller and smaller as the
sentences gets longer! So:

 P(“a red fox .”) > P(“a red fox and a dog .”) ?

That’s not what happens in natural language!

Perplexity

The quality of sentences should NOT be inversely proportional to their length,
so we will normalize by their length...

The usual way we take the mean of numbers being multiplied is using the
Geometric Mean instead of the Arithmetic mean:

Question: what happens
if one of the numbers is
0?

This is something we’ll have
to deal with!

Digression: How do we calculate probabilities in
machine learning?

We do everything in log space!
o Avoid loss of precision from underflow (prob 𝑝 might be tiny)
o Adding is much faster than multiplying
o log is monotonic, so it preserves order for probs (𝑝 ≥ 0):

 𝑝 < 𝑞	 ↔ 	 log 𝑝 < log(𝑞)
o Can easily recover probs using exp(...)

log exp(…)

For W = w1w2...wn let us define the normalized version of P(W) using the Geometric

Mean::

and so

Thus: a well-written sentence will have a large Pnorm, and a poorly-written sentence

will have a small Pnorm. But remember, we want the opposite, so perplexity is just the

reciprocal of the Pnorm:

Perplexity

Remember: Low perplexity is good, high perplexity is bad!

Perplexity Examples

Let’s suppose a sentence of length N consists of random bits, e.g.,

 W = 101111

What is the perplexity of this sentence according to a model that gives a uniform
probability to each bit, i.e., exactly 0.5?

No matter how long the sentence is, the perplexity is 2, meaning, you always are
“perplexed” as to which of the 2 bits will be next:

Perplexity Examples

Now suppose that the probability of a 1 is 3 times the probability of a 0, i.e.,
P(1) = 0.75 and P(0) = 0.25.

 W = 10111

What is the perplexity of this sentence according to this model?

Intuitively, it should be less surprising than in the previous model, because you
would expect there to be more 1’s than 0’s:

The perplexity of a string of all 1’s is always

The perplexity of a string of all 0’s is always

Perplexity Examples

What is the perplexity of

“John”

“Mary likes to watch movies”?

“John likes to play cards more
than John likes to play cards
too but Mary likes to play cards
more than John likes to watch
movies”

 0.759. (?!!!)

Perplexity is the inverse probability of the
test set, normalized by the number of
words:

 Chain rule:

 For bigrams:

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Perplexity

The best language model is one that best predicts an unseen test set

Lower perplexity = better model

Example: Training 38 million words, test 1.5 million words, WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

To test a model, training it on training set, test it on testing set:
The quality of the model is the perplexity of the entire test set,
considered as one long string!

Perplexity Examples

What is the perplexity of

“Mary likes to watch movies
with John”

“Mary likes to watch cards”?

Approximating Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-

Generating Shakespeare with N-Grams models:

Shakespeare as corpus

o N = 884,647 tokens, vocabulary size V =29,066

o Shakespeare produced 300,000 bigram types out of V2= 844 million

possible bigrams.

• So 99.96% of the possible bigrams were never seen (have zero

entries in the table)

o Quadrigrams worse: What's coming out looks like Shakespeare because

it is Shakespeare

The perils of overfitting

o N-grams only work well for word prediction if the test corpus looks like the
training corpus
o In real life, it often doesn’t
o We need to train robust models that generalize!
o One kind of generalization: Zeros!

o Things that don’t ever occur in the training set
o But occur in the test set

Zeros

§ Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

• Test set
… denied the offer
… denied the loan

Zero probability bigrams

§ Bigrams with zero probability
§ mean that we will assign 0 probability to the test

set!
§ And hence we cannot compute perplexity (can’t

divide by 0)!

The intuition of smoothing (from Dan Klein)

§ When we have sparse statistics:

§ Steal probability mass to generalize better

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 7 total

P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other
 7 total

al
le
ga
tio
ns

re
po
rts

cl
ai
m
s

at
ta

ck

re
qu
es
t

m
an

ou
tc

om
e

…

al
le
ga
tio
ns

at
ta

ck

m
an

ou
tc

om
e

…al
le
ga
tio
ns

re
po
rts

cl
ai
m
s

re
qu

es
t

Add-one estimation
§ Also called Laplace smoothing
§ Pretend we saw each word one more time than we did
§ Just add one to all the counts!

§ Normal (Most Likely Estimate):

§ Add-1 estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

Add-1 estimation is a blunt instrument

§ Add-1 isn’t optimal for N-grams
§ We’ll see better methods in next slides

§ But add-1 is used to smooth other NLP models
§ For text classification
§ In domains where the number of zeros isn’t so large.

Backoff and Interpolation

o Sometimes it helps to use less context
• Condition on less context for contexts you haven’t

learned much about
o Backoff:
• use trigram if you have good evidence,
• otherwise bigram, otherwise unigram

o Interpolation:
• Weighted average of unigram, bigram, trigram, learn

weights by training

N-gram Smoothing Summary
Used to deal with missing data

o Add-1 smoothing:

§ OK for text categorization, not for language modeling

o Backoff and Interpolation

§ Learn weights for interpolation

o Combination approaches

§ Extended Interpolated Kneser-Ney (state of the art, covered in the

text)
37

